If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+3z=5-2z/4+z
We move all terms to the left:
2z^2+3z-(5-2z/4+z)=0
Domain of the equation: 4+z)!=0We add all the numbers together, and all the variables
We move all terms containing z to the left, all other terms to the right
z)!=-4
z!=-4/1
z!=-4
z∈R
2z^2+3z-(z-2z/4+5)=0
We get rid of parentheses
2z^2+3z-z+2z/4-5=0
We multiply all the terms by the denominator
2z^2*4+3z*4-z*4+2z-5*4=0
We add all the numbers together, and all the variables
2z^2*4+2z+3z*4-z*4-20=0
Wy multiply elements
8z^2+2z+12z-4z-20=0
We add all the numbers together, and all the variables
8z^2+10z-20=0
a = 8; b = 10; c = -20;
Δ = b2-4ac
Δ = 102-4·8·(-20)
Δ = 740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{740}=\sqrt{4*185}=\sqrt{4}*\sqrt{185}=2\sqrt{185}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{185}}{2*8}=\frac{-10-2\sqrt{185}}{16} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{185}}{2*8}=\frac{-10+2\sqrt{185}}{16} $
| (m/4)+8=-30 | | 11=10x-3-3× | | 3/4y-6=1/4y | | m/4+8=-30 | | -30-7x=2x-20 | | −30−7x=2x−20 | | 13x+2x+6x=45 | | 3x-46-5x=48 | | 3x=46-5x=48 | | 1/2x=-6/1 | | x/2-3/4x-5/4x=6 | | x+x+(x-15)=180 | | 2x-180=x | | 50=2x-29 | | 8x-7=8-12(x+2) | | 184=s*3+2s+40 | | 3(x-10)=4-5x | | 8(4x+5)-5(6x)-x=53 | | 6x+10-2x=-2 | | x=3-7÷1/4+5= | | |5x+4|=2 | | X^4-8x^2-18x-20=0 | | 9x+8=4x-1 | | -3x=-8x+25 | | 32/3x=x | | x+49=65 | | 4v/3=-8 | | 5÷x=7 | | (27.95+.12)x=(12.95+.32)x | | a^2+15-8a=0 | | -8y=-16/9 | | -1w^2+(2w-6)^2=36 |